

ALMA: All-scale predictive design of heat management material structures

Version Date: 2015.11.13. Last updated 2015.12.02

Purpose of this document:

Definition of a data organisation that is applicable to ALL materials modelling simulations. The fiche should contain all elements that are needed to describe a simulation. This information spans from the end-user (manufacturer) information to the computational modelling details.

			THE SIMULATION GENERAL DESCRIPTION			
		The user wa	nts to analyse the time and space evolution of the temperature distribution in a			
1	USER CASE	device, including effects beyond the reach of Fourier's law, such as ballistic and sub-ballistic				
		transport, ar	iu nequency-dependent boundary enects.			
	CHAIN OF MODELS	MODEL 1	Electronic model: Electronic Density Functional Theory			
2		MODEL 2	Atomistic phonon model: Monte Carlo solution of the Boltzmann Transport			
		IVIODEL Z	Equation in the relaxation time approximation			
	PUBLICATION	• W.	Li, J. Carrete, N. A. Katcho & N. Mingo, Comp. Phys. Comm. 185 (2014) 1747			
3		• JP	. M. Péraud, C. D. Landon & N.G. Hadjiconstantinou, Annual Rev. Heat Transfer, 17			
		(20)	14) 205			
		DFT packages are available under either commercial or open-source licenses.				
	Access	The BTE part is implemented in AlmaBTE, an Apache-licensed (open-source) software package				
4	CONDITIONS	developed and owned by the ALMA development team (J. Carrete, G. Madsen, N. Mingo, B.				
		Vermeersch	& T. Wang). Web site: <u>http://www.almabte.eu</u>			

Workflow

The BTE model will be applied to the complete semiconductor device. The Hamiltonian expresses the forces on the atoms and these are calculated with a DFT model for each layer of the device.

Model 1

1	ASPECT OF THE USER CASE/SYSTEM TO BE SIMULATED				
	ASPECT OF THE USER	Forces on each atom in a part of a semiconductor device consisting of			
	CASE TO BE	atoms whose species and positions are known.			
1.1	SIMULATED				
	AND ITS ROLE IN THE				
	WORKFLOW				
1.2	MATERIAL	A crystalline semiconductor			
1.3	GEOMETRY	Bravais lattice + atomic motif			
1.4	TIME LAPSE	Zero: static setting			
	MANUFACTURING	Zero pressure, zero temperature			
1.5	PROCESS OR IN-				
	SERVICE CONDITIONS				
1.0	Dupugarion	R. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge			
1.0	PUBLICATION	University Press, 2004), ISBN 0521782856			

2	GENERIC PHYSICS OF THE MODEL EQUATION				
2.0	MODEL TYPE AND NAME	Electronic moc	Electronic model: Quantum Density Functional Theory		
2.1	MODEL ENTITY	Electrons			
	MODEL	Equations	Kohn – Sham DFT		
2.2	Physics/ Chemistry EQUATION PE's	Physical quantities for each equation	Spatial coordinates, Bloch wave vector, Kohn – Sham wave functic Hamiltonian, electronic charge density		
			Equations	 Exchange and correlation functional Projected-augmented wave dataset 	
MATERIALS RELATIONS		Physical quantities/ descriptors for each MR		 Exchange energy, correlation energy, electronic charge density Kinetic energy, all-electron charge densities, pseudo electron core densities, all-electron partial waves, pseudo partial waves, projector functions, matching radii 	
2.3	PUBLICATION ON THIS SIMULATION	1 			

This part is similar to the description on input files to simulation software and requires understanding of the underlying architecture of the data in certain class of solvers for the models.

3	SPECIFIC COMPUTATIONAL MODELLING METADATA						
3.1	NUMERICAL SOLVER	Self-Consisten	Self-Consistent Field (SCF) procedure				
3.2	SOFTWARE TOOL	VASP, https://www.vasp.at/					
3.4	TIME STEP	Stationary state solution					
	COMPUTATIONAL	PHYSICS The DFT equations are applied to the set of valence electrons defin					
2 5	REPRESENTATION	EQUATION	the constituent atoms in the semiconductor. Nuclei are represented by				
3.5	Refers to how		points. The wave functions of electrons are defined over a parallelepipedic				
	your	unit cell. One-electron orbitals, the electronic charge density, and the					

	computational		potential are expressed in plane wave basis sets.
	solver represents	MATERIAL	The exchange and correlation functionals are hardcoded
	the material,	Relations	
	properties,	MATERIAL	The PAW datasets characterizing each kind of atom are expressed in terms
	equation		of spherical harmonics and radial grids
	variables,		
		BOUNDARY	The calculations are done on a representative parallelepipedic unit cell
		CONDITIONS	with periodic boundary conditions
		ADDITIONAL	1. Plane wave energy cutoff
		SOLVER	2. Number of Bloch wave vectors
		PARAMETERS	3. Tolerance for the convergence of the SCF method
3.6	PUBLICATION		

Post processing

The "raw output" calculated by the model for the model entities is contained in the metadata above. This output is processed by a post processor in order to calculate values for physics variable for larger entities.

When this post-processed output is used in a next model, a pre-processor might be used.

4	POST PROCESSING	
4.1	THE PROCESSED OUTPUT	Forces on atoms, Quantum mechanical phonon Hamiltonian (yielding scattering amplitudes group velocities) for atoms
4.2	METHODOLOGIES	The Hellmann-Feynman theorem is used to compute the forces on atoms in a set of configurations. A quantum mechanical phonon Hamiltonian is built from finite
4.3	MARGIN OF ERROR	differences between these forces. Margin of error: typically within 10%, mostly due to the error in the material relations
-		(exchange and correlation functionals).

Model 2

1	ASPECT OF THE USER CASE/SYSTEM TO BE SIMULATED					
	ASPECT OF THE USER	Distribution of temperature vs. space and time, the thermal conductivities				
	CASE TO BE	, and so on in a system made up of crystalline materials with or without explicit defects				
1.1	SIMULATED					
	AND ITS ROLE IN THE					
	WORKFLOW					
1.2	MATERIAL	Crystalline semiconductors with various distributions of defects (vacancies, dislocations)				
1.3	GEOMETRY Arbitrary geometries in scales ranging from nm to mm. The geometry is defined by external boundary plus a set of atomistically described interfaces.					
1.4	TIME LAPSE	From ps to ms				
	MANUFACTURING	Isothermal or diffusive walls (interfaces between parts of the system)				
1.5	PROCESS OR IN-					
	SERVICE CONDITIONS					
1.6	PUBLICATION	Unpublished work				

2	GENERIC PHYS	SICS OF THE MO	DEL EQUATIO	N		
2.0	MODEL TYPE	Atomistic phonon model: Boltzmann Transport Equation and atomistic				
2.0	AND NAME	quantum-mechanics for electromagnetics scattering				
2.1	MODEL ENTITY	Atoms				
		Equations	1. Peie	erls-Boltzmann transport equation		
	Model		2. Lipp	mann–Schwinger equation		
	Physics/	Physical	1. Tim	e, spatial coordinates, phonon frequencies, phonon group		
2.2	CHEMISTRY	quantities	velo	cities, phonon occupation numbers, scattering rates		
	EQUATION	for each 2. Gre		en's function, phonon wave functions, perturbation matrix, t		
	PE's	equation	mat	rix		
Equations			Equations	1. Phonon dispersion relations		
				2. Anharmonic force constants		
				3. Perturbation matrix		
MATERI		Physica	quantities/	1. Phonon wave vectors, phonon frequencies, phonon group		
IVIATERI	ALS RELATIONS	descript	ors for each	velocities		
			MR	2. Phonon wave vectors, phonon branch indices, anharmonic		
				force constants		
				3. Perturbation to the phonon Hamiltonian in real or mixed		
				real / reciprocal space		
	Simulated	A quantum me	chanical phor	on Hamiltonian calculated with DFT to simulate phonon		
2.3	Input	dynamics.				
2.4	PUBLICATION					

This part is similar to the description on input files to simulation software and requires understanding of the underlying architecture of the data in certain class of models.

3	SPECIFIC COMPUTATIONAL MODELLING METADATA				
3.1	NUMERICAL SOLVER	Monte Carlo			
3.2	SOFTWARE TOOL	AlmaBTE, http://www.almabte.eu, Apache license			
3.4	TIME STEP	Time is not dis	cretized		
	COMPUTATIONAL	PHYSICS	Phonon-related quantities are defined over phonon wave vectors and over		
	REPRESENTATION	EQUATION	phonon branches. Real space dependences are explicitly considered		
	Refers to how	MATERIAL	Anharmonic force constants are defined over atoms in real space. General		
	your	RELATIONS	perturbation matrices are defined in N real space dimensions and M		
35	computational		reciprocal space dimensions, with N+M=3.		
5.5	solver represents	MATERIAL	Materials are characterized by		
	the material,		by an computationally described geometry of the atoms and the properties		
	properties,		<which> for each type of atoms stored in HDF5 files</which>		
	equation				
	variables,				
		BOUNDARY	Isothermal walls (phonon reservoirs in thermal equilibrium), periodic		
		CONDITIONS	boundaries, diffusive walls (with elastic but otherwise random scattering of		
			phonons) and atomistically described internal interfaces.		
		ADDITIONAL	1. Density of the wave vector grid		
		SOLVER	2. Broadening of the phonon modes		
		PARAMETERS			
3.6	PUBLICATION				

Post processing

The "raw output" calculated by the model for the model entities is contained in the metadata above. This output is processed by a post processor in order to calculate values for physics variable for larger entities.

When this post-processed output is used in a next model, a pre-processor might be used.

4	POST PROCESSING	
11	THE PROCESSED OUTPUT	Finite volumes
4.1	IS CALCULATED FOR	
4.2	METHODOLOGIES	Temperatures, thermal currents and thermal conductivities and functions of space and time are computed by integrating the results of the BTE solver over wave vectors and frequencies
4.3	MARGIN OF ERROR	For most semiconductors, errors within 10% are achievable, and come mostly from imprecisions inherited from DFT. For some high-conductivity materials, systematic errors of 20-30% come from the relaxation time approximation.